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Neutron Diffraction Study of Partial Radial Densities in y-CuCl, Including an Appendix on 
the Effect of Instrumental Resolution on Radial Density Analysis* 
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Neutron diffraction has been used to study the structural disorder in ~,-CuC1 at 25 and 366°C. Powder 
patterns of 63CuNC1, NCuNC1 and 65CuNCI (N= natural abundance) were treated by integrated intensity 
(II) and radial density (RD) analyses. Using II, a satisfactory fit to these 366°C data was made with the 
anharmonic model described by Sakata, Hoshino & Harada [Acta Cryst. (1974). A30, 655-661]. This 
fit resulted in an anharmonic parameter flcu = 1.2 + 0.6 x 10-lz erg A,-3, which is in excellent agreement 
with the value of flcu = 1.15+0.66 x 10 -lz erg A, -3 obtained from a single-crystal study at room tem- 
perature by Sakata et al. (1974). To eliminate the indistinguishability of the anharmonic and statistically 
disordered models inherent in II, an energy analysis was made of the diffuse scattering. It was found that 
at 25 °C, 50 to 70 % of the diffuse scattering is elastic. The non-monotonic x dependence of this elastic 
diffuse scattering implies a model of correlated static displacements of Cu atoms and is inconsistent 
with the anharmonic model. Radial density analyses of the three spectra were fitted to a model based 
on harmonic vibration to obtain partial radial densities 0cucu, 0c~c~ and 0cuc~. Although the 0c~c~ was 
typical of that expected for a solid structure, ecuc, at 3660C was found to be more 'liquid-like'. Quan- 
titative conclusions from this radial density analysis are limited by the strong dependence of the results 
on instrumental resolution. An estimate of the effect of instrumental resolution on the measured radial 
density function is contained in Appendix B. 

1. Introduction 

From the X-ray structural investigations by Miyake, 
Hoshino & Takenaka (1952), Hoshino (1952, 1954, 
1955, 1957) and Miyake & Hoshino (1958) on powder 
specimens of CuI and CuBr, it appears that the cuprous 
halides exhibit 'structural disorder' quite similar to that 
proposed for fl-AgI by Helmoholz (1935) and for 
c~-AgI by Strock (1936). Although the zincblende type 
of structure is accepted for the y-phases, analysis of 
integrated intensities invariably yields high values for 
the cation mean square displacements (u 2) at both 
room and elevated temperatures. 

The expected presence of this 'structural disorder' 
in CuC1 has recently been confirmed by Sakata, Hoshi- 
no & Harada (1974), (SHH), who carried out a detailed 
neutron diffraction study of a single crystal at room 
and elevated temperatures. SHH have discussed their 
results in terms of three possible models. 
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Harmonic model. Vigorous isotropic thermal vibra- 
tions of Cu atoms. The atoms in the unit cell of CuC1 
(zincblende structure of space group F-43m) have co- 
ordinates Cu: 0, 0, 0; f.c., C1: ¼, ¼, ¼; f.c. Two isotropic 
thermal parameters Bc, and Bc~ are to be determined. 

Anharmonic model. Asymmetric anharmonic thermal 
vibrations of Cu atoms along the tetrahedral diagonals. 
In the lowest order of approximation, two isotropic 
thermal parameters Bcu and Bc~ and two anharmonic 
parameters tic, and Pc~ must be determined. 

Disordered model. Statistical disorder of the Cu atom 
with moderate thermal vibration among the four 
metastable positions represented by coordinates Cu: 
6,fi,6; 6,6,6; 6,~,6; 6,6,3; f.c., with fi, Bc, and Bcl to 
be determined. 

SHH noted that for 6 small, the anharmonic and 
disordered models are indistinguishable when analyses 
of integrated intensities are used. Their fit to 43 inde- 
pendent room-temperature reflections yielded the re- 
sults displayed in Table 1. Although statistically indi- 
stinguishable, SHH favored the anharmonic rather 
than the disordered model as the former fitted high- 
temperature data with no adjustable parameters, 
whereas the latter model could only be made to fit the 
high-temperature data when a temperature dependent 
6 was allowed. In the present study, a distinction be- 
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tween the anharmonic and disordered models is made 
by examination of the diffuse scattering accompanying 
structural disorder in CuC1. 

Table 1. Results of Sakata et al. (1974)for thermal 
parameters in CuC1 at room temperature 

H a r m o n i c  A n h a r m o n i c  Disordered  
mode l  mode l  mode l  

Pa ramete r s  ( R = 5 . 2  %) ( R = 3 . 7  %) ( R = 4 - 0  %) 

Be~(A 2) 4"4_+0"08 4"4 _+0-08 2"9 _+0"15 
Bct (/~2) 2"4 + 0"04 2"5 _+ 0"04 2"3 _+ 0"04 
flea (10 -12 e,'g A -3) - 1"15_+0"66 - 
flct (10 -t2 e r g / ~ - a )  _ 0"0 _+ 1"60 - 
6 - - 0.024_+ 0.0006 

The structural characterization of CuC1 has added 
interest in light of the investigation of liquid CuCI by 
Page & Mika (1971) (PM). In this study, the partial 
radial distribution functions for Cu-Cu, Cu-C1 and 
C1-CI distances were determined using the isotopic 
substitution technique originally suggested by Vineyard 
(1958) and developed by Keating (1963). PM found 
that the Cu-Cu distances were virtually uncorrelated 
at 440°C (CuC1 melts at 430°C), whereas the C1-C1 
distances show a typical liquid-like behavior with a 
well defined nearest-neighbor distance followed by 
rapidly damped oscillations. Since radial distribution 
analysis is applicable to polycrystalline materials as 
well as to liquids (Kaplow, 1974), it was thought desir- 
able to repeat the experiment of PM for y-CuC1 as an 
alternative representation of the disordered solid 
structure. 

2. Theory 

The coherent differential scattering cross section 
(CDSC) for a binary powder at the reciprocal length 1c 
can be written as (see e.g. Vineyard, 1958) 

s0c)= ~ ~ b~bjx~Su(K) ; (1) 
i j 

with 

SuOc)=fiu + [ou(r)_xjOo] sin__Kr dr , (2) 
K 

and b~ = coherent scattering length of chemical species 
i, x~=atomic fraction of chemical species i, Su(K)= 
partial structure factor for/j" scattering, flu = Kronecker 
symbol: f i u = l  atom if i=j, ~ u = 0  if iCj, r=rad ia l  
distance in a crystal, ou(r )=par t ia l  density of t.'] pairs; 
the term is the number o f j  atoms per unit volume to be 
expected at a distance r from an i atom, 00 = the number 
of atoms per unit volume to be expected in a random 
choice of volume element in a crystal. 

In the case of neutron diffraction, the bt are inde- 
pendent of x and equations (1) and (2) can be readily 
manipulated into a relation between two functions that 
form a Fourier sine pair 

where F and G are defined as follows: 

F0c)= tc[s(t¢) - @2)]/(b2), 

6 ( r ) =  ~ ~ x,b,bjgnr[Qu(r ) -  Xjeol/(b~) , 
t j 

where (bZ)= ~x~b~, and 
m 

i , j ,m=l ,2 .  (4) 

Since s(tc) is observable, FQc) will be referred to as the 
data function and G(r) as the structure function. Ul- 
timately, one is interested in finding three Qu(r) func- 
tions, namely Qcucu, QCuCl and Qc~c~. 

Equations (1) and (2) apply to liquids as well as to 
polycrystalline samples. Moreover, with neutron radia- 
tion, the values of b~ can be changed by varying the 
isotope composition of the chemical species i, and 
therefore one can, in principle, solve n observed 
CDSC's of the type in equation (1) for n unknown par- 
tial structure factors S u. This is the basis for the 'iso- 
topic substitution technique' used by PM on liquid 
CuC1. After the Su's have been obtained, a straight- 
forward Fourier sine inversion of equation (2) yields 
0o directly. Alternatively, if one has access to m(_> 1) 
CDSC patterns, one may model-fit n(>_ 1)0o curves, 
using a least-squares best approximation criterion. The 
confidence in the solution increases with an increase 
in m (for a given n). In this work, the second approach 
has been taken for reasons described below. 

From equation (3), one obtains 

Ge(r) = 2 S:F(x) sin ~crdx 
7¢ 

(5) 

where the superscript E indicates the experimental ori- 
gin of the structure function so obtained. From model 
curves for Qcucu, QC,Cl and Qc~o, one finds a model 
structure function GM(r) via equation (4), which could 
be compared with Gr(r) were it not for the fact that 
F(tc) is only known up to ~Cmax, rather than infinity. The 
so called termination error on GE(r) that ensues has 
been discussed by Kaplow (1974). He states that one 
way of dealing with the problem is by fitting G(r) to 
the known 00 for r less than nearest-neighbor distances. 
For a polyatomic solid, interference of the several 
Qo(r) at small r, required the alternative approach to 
the termination error described below. 

Terminating the integral in equation (5) at Kr~ gives 
rise to a 'terminated experimental structure function' 

C,~t (r) = S~F(K) sin r rdK.  (6) 

It is shown in Appendix A that G(r) and G,(r) are 
related by an integral equation 

f 
o o  

F(x) = G(r) sin xrdr , (3) 
o 

I:6(~)[u,(~ G , ( r )  = - r )  - ut(~ + r)]d~, (7a) 



620 N E U T R O N  D I F F R A C T I O N  STUDY OF R A D I A L  D E N S I T I E S  IN ),-CuC1 

with 
sin ~¢,,,x 

ut(x) - (7b) 
~x 

In view of the 0-function-like character of ut(x), one 
may replace the upper limit in equation (7a) by ~m >> r 
and still obtain equality to any desired degree of ac- 
curacy by choosing ~m sufficiently large. 

The model structure function GM(r) can be generated 
numerically up to large values of r and then artifically 
terminated using equation (7a) to obtain a ' terminated 
model structure function' G~(r). It is at this level that 
experiment and model are compared, and the param- 
eters of the model are adjusted. 

It should be noted that Xm limits the resolution ob- 
tainable in G(r), even when the instrumental resolution 
is perfect. Indeed, if G~(~) were a single 6 function 
centered about ~=r0, the actual function found after 
Fourier transformation of the data would be 

I af(r)-_- o ~(~-ro)  sinn(~_r)Km(~-r) d~ 

sin Km(ro - r) 
= ( 8 )  

n(ro-r )  

From equation (8), the full width half maximum 
(FWHM) of G~ is ,~ 3"8~tOm (in units of r), limiting re- 
solution to this value. 

3. Experiment 

(a) The instrument 
The neutron cross sections were determined at the 

CP-5 reactor at Argonne National Laboratory. The 
data used in the Fourier analysis were taken with 
2 =  1.05 A. The monochromator was a Ge crystal set 
for the 220 reflection. This reflection was chosen to 
improve instrumental resolution in the intermediate 
angle range, at the cost of incident intensity and some 
2/2 contamination. Typical counting times at one 20 
position were 6 min for 106 monitor counts. The corre- 
sponding counting rates varied from 200 cpm (counts 
per min) in the background to 7000 cpm for the 
strongest peaks. All data points are averages of two 
runs at 10 6 monitor counts each. The half-wavelength 
incident intensity was determined to be ~ 1% of the 
full-wavelength incident intensity and was ignored 
during the analysis. The detector motion was restricted 
to 5 ° < 2 0 < 1 1 0  ° or, with x=4ns inO/2 ,  to 0.5_<x_< 
10.0 A -1. 

In addition to the main data, shorter runs were car- 
ried out at 5 and 80 K. For these experiments, the 
wavelength was 1-23 A, which was obtained from the 
Ge 111 reflection. These data were used for integrated 
intensity analysis only. A purely elastic pattern at room 
temperature was also obtained by using a Ge 111 ana- 
lyzer in the diffracted beam, and a detector fixed in the 
position for elastic scattering (2= 1.18 A). Additional 
energy analysis was obtained from a time-of-flight 

spectrum made at selected points in K space using the 
TINTOF at CP-5. 

(b) Sample preparation 
Isotopically enriched samples of 63CuNC1 and 

6SCuNC1 (N=natura l  mixture)t and a commercially 
available NCuNC1 were purified and washed so as to 
obtain spectrographically clean samples of white color. 
The samples were enclosed in a thin-walled Pt cell 
under vacuum and heated to 366°C in an aluminum- 
wall, radiant-heatfurnace. The sc atteringvolume was 
defined by boron nitride plugs inside the cell. Typical 
samples were 1 inch in height, and 2 x inch in diameter, 
and the mass was ~ 5 g. For the low-temperature runs, 
the  63CUC1 was used, which was enclosed in a vanadium 
tube under atmospheric pressure. The elastic scattering 
measurements were performed on NCuNCI, also in a 
vanadium cell. 

(c) Measurements and corrections 
The three samples in the Pt cell were run twice at 

366°C and at room temperature. Empty-cell runs at 
both temperatures were corrected for absorption and 
subtracted. Fig. 1 shows a typical data set and the cor- 
responding empty-cell run. A multiple-scattering cor- 
rection was calculated after Blech & Averbach (1965), 
and a calculated (constant) incoherent component was 
also subtracted. The remaining intensity was scaled to 
absolute units by determining the scaling constant of 
the instrument via integrated intensities. Details of the 
data analysis are given by Schreurs (1974). 

Fig. 2 shows the CDSC's thus obtained for the three 
samples at the two temperatures. The functions s(x*) 
are plotted against x * = x a  (a=lat t ice parameter) 
rather than x for convenience in comparing runs at 
different temperatures. The large amount of diffuse 
scattering at 366 °C and the near disappearance of the 
reflections beyond ~c*___ 30 are most strikin.g. The re- 
solution of the instrument can be appreciated by refer- 
ring to the Pt pattern in Fig. 1. 

t Obtained from the Stable Isotope Division, Holifield 
National Laboratory, Oak Ridge, Tennessee. 

" u 

~,a ~.  [ 

• e4 

7, o 

5 0 2 0  60  70 80  90  100 

Fig. 1. Raw data from naCuCI ( ) and empty platinum 
cell ( . . . . . . .  ) at 25 °C. 



J. S C H R E U R S ,  M. H. M U E L L E R  A N D  L. H. S C H W A R T Z  621 

4. Integrated intensities 

Integrated intensities were obtained from data in Fig. 2, 
with backgrounds estimated by linear extrapolation 
under peaks. At each temperature, data from the three 
samples were combined, which increased the number 
of independent reflections. Using the harmonic model, 
room-temperature data refined to Rw = 2.2 °,4 with 24 
reflections, and Bcu =4.3 + 0.2 A. 2 and Bc~ = 1.9 + 0-1/~2 
are in reasonable agreement with the results of SHH 
given in Table 1. Attempts to fit these data to the an- 
harmonic model led to indentical values for Rw, Bc, 

9 barns 311 4?0331 472=.. 442 440 600 ster atom 

6 . . . . . . .  566"C 

5 1 25"C 

4 

2 

0 ~ ' ' 

3 2 . . . . . .  ~ m  

I A -' 

0 ' ' ~ '  " - -  I0 20 30 40 K ~ 

Fig. 2. Experimental values of s(x*) vs K* (=tea) at 25 and 
366°C for 6SCuCl, 63CuCl and ~CuC1. 
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Fig. 3. Flow sheet for data reduction and model calculation 
in radial density analysis. 

and Bc~ and an insignificantly small value for the an- 
harmonic parameter ft. 

The 366°C data could also be fitted to a harmonic 
model, with Bcu=13"0+l '0  and Bc1=4"6+0.4 A~z; 
however, difficulty in separating peaks from back- 
ground is reflected in the large value of Rw= 7.4 % for 
21 reflections. At this high temperature, a larger degree 
of structural disorder is evidenced in the integrated 
intensities. Fitting to the anharmonic model reduces 
the agreement factor to Rw=6.4% and assuming 
tic1=0 yields a value of t ic ,= 1.2+0.6 x 10 -z erg A_ -3, 
which is in excellent agreement with the results of SHH. 
It is interesting to note that the large values of thermal 
parameters observed at elevated temperatures continue 
at lower temperatures. Data taken at 5 K on 63CuNfl 
were fitted with the harmonic model to yield the ex- 
ceptionally large 'zero-point' values of Bcu =2.6 + 0.2 
and Bcl = 1.6 + 0" 1 A 2. 

It is clear by reference to Fig. 2 that integrated in- 
tensities represent only a fraction of the structural in- 
formation available in the powder diffraction pattern. 
In the remainder of the present paper, attention will be 
focused on alternative interpretations of these data, 
including the examination of diffuse scattering. 

5. Radial density analysis 

In § 2 it was noted that, with the three available neutron 
diffraction patterns, it is theoretically possible to ob- 
tain solutions for three 'partial structure factors' Su(x ) 
[see equations (1) and (2)]. For solids, however, a 
special difficulty arises in attempting to establish the 
value of sQ¢) on the extremely steep slopes of Bragg 
peaks; slight errors in positioning will cause large er- 
rors in the value of s(x). For this reason, the second 
approach was chosen in this work, namely to fit the 
three data sets from a model, using least-squares tech- 
niques. 

Fig. 3 shows a flow sheet of data handling and model 
building. These data are scaled to absolute cross sec- 
tions (Fig. 2), and a constant, calculated value for the 
incoherent contribution and multiple scattering is sub- 
tracted. The s(x) curves so obtained are manipulated 
into FQ¢) curves [equation (4)] and then transformed 
to yield the terminated experimental structure func- 
tions G~(r), one for each isotopic composition. 

The model building starts from the position of the 
atoms in the unit cell. For a given origin (Cu or C1), 
the number of pairs of a given distance (in a single 
crystal) are counted and a 'pair histogram' is built. The 
equivalent number density of such a pair histogram 
ou(r) consists of a number of 6 functions of different 
strengths c~, 

4nrZou(r)=~ c~6(r-r,.), i , j=Cu,  C1, (9) 
m 

where the sum is over all possible single-crystal dis- 
tances between i and j atoms. 

As a result of thermal vibrations, the density func- 
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tion actually contains a series of peaks of finite widths, 
and one writes 

4zcr2eu(r)= ~_, c~Bm(r-rm) . (10) 
m 

For the functions Bin, Gaussian curves were chosen. 
Following Kaplow (1974), 

4rcrQ~s(r)=~ c~ exp [-(r-r')E/2(cr~)2] (11) 
m r=o~l /~  

In general, one cr~ width parameter exists for each in- 
teratomic distance, but these parameters should ob- 
viously be related to the thermal vibration of the sys- 
tem. For monoatomic cubic crystals, the mean square 
vibrational amplitude is (u 2) = 3(u~ z) = 3B/(8~2), where 
u= is the vibrational amplitude projected in the diffrac- 
tion direction. For such a crystal, the width parameter 
associated with the uncorrelated vibrations of distant 
atom pairs is a~=2(u~)  ~/2. To account for coupling 
between neighboring atoms, Kaplow introduces the 
Walker-Keating coupling factors 7" defined by 

(Gm)2=Tm(G~°)2 (12 )  

and 
lim 7"= 1. (13) 

m - - . . + e o  

These concepts are readily extended to the binary CuC1 
system as follows: 

(a~') 2 = (B, + Bj)/(8zc2), (14) 
(a~)z=,.'nra ,s) , (15) 

lira 7 ~ = 1 ,  i,j; Cu, C1. (16) 
/?Z-.-+Cx3 

Once the 4rcreis(r) model curves are obtained, GM(r) 
is calculated from equation (4); the superscript M in- 
dicates the model nature of the function. To compare 
the model with experimental curves, equation (7) is 
used to produce a terminated model structure function 
G~(r), one for each isotopic composition. At this 
point, Powell's (1965) algorithm is used to minimize 
the sum of the squared differences between G~ and G~, 
and the parameters are adjusted until a specified accu- 
racy is obtained, or until failure to converge is detected. 

A typical end product of such a procedure for the 
harmonic model is shown in Fig. 4, in which G~(R*) 
and G~(R*) vs R*(= r/a) are plotted for room tempera- 
ture ~VCuNC1 data. Successful treatment of termination 
errors is evidenced by the equally satisfactory fits at 
low and high R*. The results of the fit may also be dis- 
played as plots of 4zcR*Qis, as shown in Figs. 5 and 6 
for room temperature and 366°C data, respectively. 
In both figures, the remarkable difference between 
QC~Cl and Qc~c, is displayed. The parameter values 
resulting from this fitting procedure are listed in 
Table 2. It is seen that Bcu from radial density analysis 
is larger than that determined by the analysis of inte- 
grated intensities by a factor of two at both tempera- 
tures. A possible origin of this discrepancy as a con- 
sequence of instrument resolution is developed in Ap- 

pendix B. The coupling factors used in the fits are also 
listed in Table 2. Particularly noteworthy is the small 
value of 1 7CuCl, indicative of strong correlation in first- 
neighbor Cu-C1 distances. 

An interesting comparison may be made between 
the present results at 366°C and the liquid structure 
studied by PM, as shown in Fig. 7. The dotted curves 
represent the liquid CuC1 at 440°C, whereas the full 
curves b.re for the crystalline 7-phase at 366 °C. In Fig. 
7, the results are presented as partial radial distribution 

120 G t (R') • data (25°C) 
- -  calculated 

40 ~ 80 ~ NCuC~ 

-40 

- 8 0  - 

Fig. 4. Comparison of G~(R*) ( ) and G~(R*) ( . . . . . .  ) 
vs R* (= r/a) for the NeuC1 at 25 °C. 

0.2 014 0.6 08  I!0 1.2 1.4 16 1.8 2!0 R" 

Cu Cu 
o o  

0 L . . . . .  

r Cu C/, 

Ol - ~ -  ' ' ' t!o . . . .  2[0 R" 

[ I" '~ I = I'° " " 1 " 1  ~ 
Fig. 5. Partial radial density functions for y-CuC1 at 25°C. 

=ool- ,~%c, 
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4 "n'R ~ xCu po 

0 ~ - -  ' R~ . . . .  i ' ' ' ' l 

i.o 2.0 

| ,..'p 

1.0 2.0 

Fig. 6. Partial radial density functions for y-CuC1 at 366°C. 
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functions gij(r)=Oij(r)/XjQo. The C1-CI distribution in 
the solid state is typical for a crystalline structure 
(Fig. 7c). A striking resemblance is noted between the 
distribution functions of  Cu-Cu at 366°C and CI-C1 
in the liquid state (Fig. 7b). The total lack of correlation 
exhibited in the Cu-Cu distribution for the liquid state 
has been discussed by PM. It should be noted that the 
oscillations near the origin in the curves for the liquid 
are due to termination error, an effect taken into ac- 
count in the present study of 7-CuC1. 

g ( l i q u i d )  

CuCu 

/ 

(a) 
/ 

| i 
0 t t 

! t 

k; 
T t T I [ , ~ t = I r 

mo [A] 
2 g ( so l i d )  ~= 

( b ) ,, , ,  ~',1~,. " "  i , t r ,  J ~ 1 \  
i i i t ~  i " . . 

, 'J ~J " \ g  ( h q u t d )  d) 
, e  

' '  ; ' ' '  ',Jo 
g ( s o l i d )  II  

5 

2 
(~) 

I - 

0 
5 lo [A] 

Fig. 7. Partial radial distribution functions, g, for (a) CuCu 
found in liquid CuCI at 440°C ( . . . . . . .  ), (Page & Mika, 
1971); (b) CuCu and (c) CICI found in solid 7-CuCI at 
366 °C ( ), this work. 

~_ : 

I I 
20 40 60 

20---,- 

Fig. 8. Three-axis elastic scattering patterns, (a) UCuUCI at 
25 °C and (b) Si powder at 25 °C. 

Table 2. Values of the parameters of  the radial 
density analysis (harmonic model) 

Temperature 25 °C 366 °C 
Bc. 10"5 + 1"0 A 2 23"6 +3"5 A 2 
Bcl 1"9 _+ 0"5 4"9 _+ 1"5 

Coupling factors ~ z (Tcuc,= rclc,) 
Shell 

number 
7 t (CuCI) 0.16+0-01 0.14+0.01 1 
71 (CuCu) 0.74_+0.1 0.56_+0.1 2 
72 (CuCI) 0.87 + 0.2 0.73 -+ 0.3 3 
72 (CuCu) 0.72-+0.1 0.60-+0.1 4 
},3 (CuCI) 0-52 _+ 0.4 0.45 _+ 0.4 5 
73 (CuCu) 0.79 _+ 0.2 0.87 _+ 0.3 6 
74 (CuCI) 1.0 0.76 + 0.4 7 
),4 (CuCu) 1.0 1 "25 _+ 0.4 8 
75 (CuCI) 1.0 0.68 _+ 0.4 9 
75 (CuCu) 1.0 1.05_+ 0.4 10 
76 (CuC1) 1.0 0.63 _+ 0.4 11 
76 (CuCu) 1-0 1.3 +0.4 12 

The results of Fig. 7 indicate that in both the solid 
and liquid states the Cu-Cu distribution is broader and 
flatter than the C1-C1 distribution. Although the effects 
of errors inherent in the technique (e.g. termination 
and instrumental resolution) may affect the absolute 
values of the parameters, the qualitative distinction be- 
tween the two distributions is clear. It should be em- 
phasized that the liquid-state results are solutions of 
the isotopic equations, whereas the present study relies 
on model fitting. 

6. The nature of the diffuse scattering 

Although indistinguishable with regard to integrated 
intensities, the anharmonic and disordered models 
would give rise to different types of diffuse scattering. 
For  the anharmonic model, all diffuse scattering should 
be inelastic, arising from the dynamic motions of the 
atoms. On the other hand, a statistically disordered 
structure would exhibit an elastic component of the 
diffuse scattering as a result of statically displaced 
copper ions. It might be expected that, if the anhar- 
monic model were correct, the larger values of Be, ob- 
tained from the radial density analysis Would be due 
to the inclusion of the inelastic diffuse scattering in this 
analysis. 

To check the nature of the diffuse scattering, a purely 
elastic three-axis run was performed on the nCuUC1 
sample (2= 1-18 A). Fig. 8(a) shows the scattering ob- 
tained from such a sample enclosed in vanadium at 
room temperature. A silicon standard (also in vana- 
dium) is shown in Fig. 8(b). Using a similar sample, a 
time-off-flight energy analysis was made at selected 
points of K space. This spectrum revealed that the first 
inelastic maximum of the scattering law S(K, o9) lies well 
outside the 2-25 meV resolution of the analyzing crystal 
in the three-axis experiment. Throughout  the x-range 
of investigation, the first maximum in the o9 direction 
occurred between 4 and 4.5 meV. As can be seen from 
Fig. 8(a), a significant portion of the diffuse scattering 
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is still present in the elastic pattern. The silicon pattern 
(similar structure, cross sections and lattice parameter) 
indicates that no other instrumental effects cause the 
background increase in the CuC1 and, incidentally, 
that an angle-independent multiple-scattering correc- 
tion is quite reasonable. 

From a comparison of the three-axis run with the 
two-axis runs, it is estimated that 50 to 70 % of the 
diffuse scattering is elastic (+2.25 meV), indicating 
that some type of displacement disorder exists in the 
system. A statistical distribution of the Cu atoms over 
the (x,x,x) equipoint, however, will not give rise to 
this to-dependent diffuse background, and more com- 
plex models, probably with correlated displacements, 
must be considered. 

Having established that the diffuse scattering is 
primarily elastic, it remains to explain why radial den- 
sity analysis gives rise to higher B values than the inte- 
grated intensity analysis. It is shown in Appendix B 
that the resolution of the instrument introduces an 
error in the widths of the radial density peaks. The 
nature of the error is such that peaks farther away from 
the origin are broadened more than peaks closer to the 
origin. Setting 7~= 1 from a particular value m0 on- 
ward, will fix the 'temperature factor' (rather arbitrar- 
ily), absorbing the resolution error in a ~. From the 
results in Appendix B, it appears that the widths of the 
peaks at the reduced radial distance of ,-~ 1-5 lattice 
parameters are 50 to 100% broadened. This would 
cause least-squares B factors to be too large by a factor 
of two to three, if the coupling factors are set equal to 
1.0 at this distance and beyond. 

7. Conclusions 

From integrated intensity analysis, it appears that 
7-CuCI can be described as zincblende type, with struc- 
tural disorder of the copper ions describable in terms of 
an anharmonic or statistical-disorder model. The dif- 
fuse scattering was found to be a mixture of elastic and 
inelastic scattering. At room temperature, ~ 50 to 70 % 
of the scattering is elastic. Since an anharmonic zinc- 
blende structure does not explain this scattering, a 
model of 'correlated' displacements that will give the 
observed distribution of elastic coherent diffuse scatter- 
ing needs to be developed. 

The radial density analysis, unfortunately, is strongly 
affected by instrumental resolution and can only pro- 
vide qualitative information. In general terms, the 
Cu-Cu distribution is much broader and less well de- 
fined than the CI-C1 distribution. Since both of these 
curves are based on the same model histogram, the 
broad Cu-Cu distribution is qualitatively viewed as a 
'smearing' of the sharp CI-C1 distribution due to cor- 
related disorder of the Cu ions in the C1 tetrahedra. 
This concept may be extended to describe the liquid 
CuC1 results of PM. The CI-C1 distribution in the 
liquid may be thought of as CI tetrahedra, with a 
dynamically varying distribution of bond lengths and 

angles, which is analogous to the supposed structures o 
amorphous Ge and Si. In these C1 tetrahedra, structur- 
ally disordered Cu ions would produce an additional 
'smearing' of the liquid CI-C1 distribution to form the 
nearly correlation-free distribution measured for Cu- 
Cu by PM and presented in Fig. 7(a). 

The situation in radial density analysis is rather un- 
satisfactory. Most errors (e.g. termination and scale 
factor) primarily affect the region of r space near the 
origin and the first peaks. The instrumental resolution 
error takes over where the other errors disappear. It is 
apparent from the results in Appendix B that resolution 
problems will have significant effects on the details of 
the radial density curves in both liquid and solid state 
investigations. 
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APPENDIX A 
Correction for termination error 

The following theorem is proven in most textbooks on 
Fourier analysis or distribution theory: if ~0(x) is con- 
tinuously differentiable on - co < x < + co and ~0(x) - 0 
for Ixl > R then 

lim I~isink------x~o(x)dx=~o(O). (A1) 
k-->oo ~ X  

This theorem is equivalent to the statement 

sin kx 
lim -6(x) on D 1, (A2) 
k-+oo ~ X  

where it is understood that D 1 is the class of functions 
(o(x) defined in the theorem. The restriction of the dis- 
cussion to D ~ is sufficient, not necessary; the radial 
density functions of diffraction theory belong to D 1. 

If one now has a function ~0(x) in D ~, then 

S 
o o  

v/(k)= ~0(x) sin kxdx -co<k< +co (A3) 
0 

exists and is called the Fourier sine transform of ~0(x). 
Consider now the 'terminated Fourier back-transform' 

21km ~u(k) sin k~dk F~(O= ~ o 

S _- _2 ~(k)[H(k+km) - n(k-k,.)]sink~dk.(A4) 
7~ 0 



J. S C H R E U R S ,  M. H. M U E L L E R  A N D  L. H. S C H W A R T Z  625 

Substituting (A3) into (A4), performing the k integra- 
tion first and using the relation sin kxsink~= 
[cos k ( ~ -  x) - cos k(~ + x)]/2 produces two integrals of 
the form 

l I+~[H(k+km)-H(k-km)] cos k~dk 

sin km~ 
- - - - u . , ( ~ .  (AS) 

The Heaviside distribution H(a) is defined by 

One finds 

i 
¢ o  

Fro(O= ~o(x)[u~(Ix-~l)-um(Ix+~l)]dx, (A6) 
0 

with Um(~) defined by (A5). From (A2) it follows im- 
mediately that 

lim F,.(~) = 9 ( ~ .  (A7) 
km--~oo 

The treatment closely follows a derivation given by 
Warren (1969). The effect of a space averaging conver- 
gence factor is discussed by Schreurs (1974). 

APPENDIX B 
The effect of instrumental resolution on 

radial density analysis 

To demonstrate the effect of instrumental resolution 
on radial density analysis, a comparison was made 
between two numerically synthesized radial density 
functions (RDF) for the same hypothetical sample. In 
the computation of the first RDF, the instrumental 
resolution was assumed to be perfect, and the CDSC 
'measured' up to ~:*=63. Although still subject to 
termination error, this RDF will be referred to as the 
'ideal' RDF, G.(R*). The same CDSC curve was then 
convoluted with a Gaussian resolution function and 
the resultant cross sections were used to calculate the 
second RDF which exhibits the effects of termination 
and instrumental resolution, and will be identified as 
the 'measured' RDF, Gtm(R* ). 

The CDCS per steradian per unit cell, s(x*) for an 
ideal polycrystalline sample can be expressed in terms 
of the structure factors (c~) for each reflection (i--h, k, l) 
as follows: 

s(~:*)=(2n) 3 ~ c,6(K*-xt)/(4nK*b. (B1) 
i 

Using equations (6) and (4) in the text the R D F  G,(R*) 
may then be written: 

~ ( s i n x ~ R * ) - 2 D m ( R * ) / n  (B2) Gti(R*)=4n . c~ tc~' 
1 

where 

DIn(R*)= sin K'R* x* R ,  2 - ]~ ,  cos to*R*. 

To simulate the measurement of s0c*) on a conven- 
tional two-axis diffractometer, 'observed' data, s0(x*), 
was calculated by convoluting s(~c*) with the resolution 
function gQc*, x'): 

where 

So(tO*) = l s(tc')gK,(tc* - it')die', 

g,,,(0 = exp [ -  (2/(2a~,)1/(o',,, V'2n). 

(B3) 

The subscript ~c* indicates that the resolution function 
depends parametrically on the point of observation. 
Substituting (B1) into (B3), and using the fact that 
aK, varies slowly with ~c*: 

So(~.*) = 

2'nn 3/z ~, c, exp [ -(~,*-~:t)21(2a~l l l (a,K' tb , 
l 

(B4) 

where a~ is the variance of the Gaussian resolution 
function at x*.This 'observed' structure function may 
then be used with (6) and (4) to obtain the measured 
RDF, Grin(R*). The analytical expression obtained by 
reasonable approximation for the present case,at ~K*, 
is: 

Gtm(R* ) = ~ 47~cl ~c~2 (x~ sin K~R* +aiR* cos x 'R*)  

xexp (-R*2a~/2)-2Dm/n. (B5) 

In the limit, when all o'i approach zero, G,m approaches 
Ga as required. 

Fig. 9 shows 'ideal' and 'measured' RDF's  for the 
same s(K*). 33 non-zero structure factors were com- 
puted for a diamond-type crystal with bE= 1 barn and 
a temperature factor B = 0.5 A 2. For a lattice parameter 
of a=5.416 A this would correspond to a cut-off at 
x =  11-6 A -1. The resolution function gK.(0 was typ- 
ical of that for the instrument described in the main 
text. 

Common practice in radial density analysis of scat- 
tering from polycrystalline specimens is to fit the Gt(R*) 
curves to Gaussians. The widths of the Gaussians are 
then related to the vibrational characteristics of the 
system [equation (9)-(16)]. Writing w;' for the HWHM 
of the ith Gaussian in the representation of Gr, one has 

w~ ~_ (1.386y~B )U2/(Zna) (B6) 

where the y~ are the coupling constants. When this an- 
alysis is applied to the RDF's  of Fig. 9, the 'ideal' G ,  
consists of peaks of virtually constant widths (2w* 
0.07 for all i) in good agreement with the resolution 
limit expected from termination error (2Wmt, -- 0"06). 
These results correspond to y~ = 1.0 for all i, and B =  

A C 32A - 7 
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1-024 A 2. This factor of two increase in B for the ideal 
R D F  over the input value of B=0 .5  A 2 is due to ter- 
mination error and may be eliminated as described in 
the text. 

The effect of instrumental resolution on the R D F  is 
exhibited in the solid curve for Grin(R*) in Fig. 9 which 
exhibits a series of peaks whose widths increase with 
R*. Since B is taken constant in (B6), the increase in 
w~ with R* has to be absorbed by the 71. The absolute 
values of these parameters will depend on the choice 
of R*, the point beyond which all 7{s are set equal to 
unity in the analysis. This same choice will also rather 
arbitrarily set the value of B, which will be heavily 
weighted by the broadened peaks beyond R* if a least- 
squares criterion is used. From Gt,, in Fig. 9, B values 
may be obtained which are two or three times as high 
as the one obtained from G, .  

Unfortunately, correcting for the resolution error is 
much more difficult than demonstrating the need for 
such a correction. The simplified case, at the basis of 
the present exposition, is of little interest in most radial 
density analyses. Where this type of analysis would be 
most useful, e.g. in the study of liquids and amorphous 
solids, sQc*) can no longer be represented by (B 1), i.e. 
the observed K * 2 S o ( K  * )  is no longer simply a sum of 
Gaussian functions. 
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